| 1 | #=======================================================================
|
| 2 | # Image filtering by convolution & kernels
|
| 3 | #
|
| 4 | # Cesare Brizio, 19 January 2023
|
| 5 | #
|
| 6 | # I did something similar around 15 years ago in Visual Basic,
|
| 7 | # with the heavy burden of a Visual Studio installation.
|
| 8 | # Thanks to Python, I can provide a working example with in a
|
| 9 | # much lighter environment.
|
| 10 | #
|
| 11 | # The main purpose here is to illustrate the inner mechanics of
|
| 12 | # a kernel convolution algorithm (see the nested loops) to allow
|
| 13 | # a better understanding of the underlying logics.
|
| 14 | #
|
| 15 | # Inspired by a post by Dario Radečić
|
| 16 | # (https://medium.com/@radecicdario)
|
| 17 | # (https://towardsdatascience.com/tensorflow-for-computer-vision-how-to-implement-convolutions-from-scratch-in-python-609158c24f82)
|
| 18 | # With some help by Mark Setchell
|
| 19 | # (https://github.com/MarkSetchell)
|
| 20 | #
|
| 21 | # "cat image" 1.jpg is available as a part of the
|
| 22 | # Cats vs. Dogs dataset from Kaggle
|
| 23 | # (https://www.kaggle.com/datasets/pybear/cats-vs-dogs?select=PetImages)
|
| 24 | #
|
| 25 | # Includes kernels from https://stackoverflow.com/questions/58383477/how-to-create-a-python-convolution-kernel
|
| 26 | # Just a few of the kernels listed are used in the code, feel free
|
| 27 | # to edit it as needed
|
| 28 | #=======================================================================
|
| 29 |
|
| 30 | import numpy as np
|
| 31 | from PIL import Image, ImageOps
|
| 32 | from matplotlib import pyplot as plt
|
| 33 | from matplotlib import image as mpimg
|
| 34 | from matplotlib import colors as mcolors
|
| 35 | from numpy import asarray
|
| 36 | import cv2
|
| 37 |
|
| 38 | def plot_image(img: np.array):
|
| 39 | plt.figure(figsize=(6, 6), dpi=96)
|
| 40 | plt.title("Cat Image")
|
| 41 | plt.xlabel("X pixel scaling")
|
| 42 | plt.ylabel("Y pixels scaling")
|
| 43 | #plt.imshow(img, cmap='gray'); # no need for a color map
|
| 44 | plt.imshow(img);
|
| 45 | plt.show()
|
| 46 |
|
| 47 |
|
| 48 | def plot_two_images(img1: np.array, img2: np.array, imm_name):
|
| 49 | _, ax = plt.subplots(1, 2, figsize=(12, 6), dpi=96)
|
| 50 | plt.title(imm_name)
|
| 51 | plt.xlabel("X pixel scaling")
|
| 52 | plt.ylabel("Y pixels scaling")
|
| 53 | #ax[0].imshow(img1, cmap='gray')
|
| 54 | #ax[1].imshow(img2, cmap='gray');
|
| 55 | ax[0].imshow(img1)
|
| 56 | ax[1].imshow(img2);
|
| 57 | plt.show()
|
| 58 |
|
| 59 | sharpen = np.array([
|
| 60 | [0, -1, 0],
|
| 61 | [-1, 5, -1],
|
| 62 | [0, -1, 0]
|
| 63 | ])
|
| 64 |
|
| 65 | blur = np.array([
|
| 66 | [0.0625, 0.125, 0.0625],
|
| 67 | [0.125, 0.25, 0.125],
|
| 68 | [0.0625, 0.125, 0.0625]
|
| 69 | ])
|
| 70 |
|
| 71 | outline = np.array([
|
| 72 | [-1, -1, -1],
|
| 73 | [-1, 8, -1],
|
| 74 | [-1, -1, -1]
|
| 75 | ])
|
| 76 |
|
| 77 | laplacian = np.array([
|
| 78 | [0, 1, 0],
|
| 79 | [1, -4, 1],
|
| 80 | [0, 1, 0]
|
| 81 | ])
|
| 82 |
|
| 83 | emboss = np.array([
|
| 84 | [-2, -1, 0],
|
| 85 | [-1, 1, 1],
|
| 86 | [0, 1, 2]
|
| 87 | ])
|
| 88 |
|
| 89 | bottom_sobel = np.array([
|
| 90 | [-1, -2, -1],
|
| 91 | [0, 0, 0],
|
| 92 | [1, 2, 1]
|
| 93 | ])
|
| 94 |
|
| 95 | left_sobel = np.array([
|
| 96 | [1, 0, -1],
|
| 97 | [2, 0, -2],
|
| 98 | [1, 0, -1]
|
| 99 | ])
|
| 100 |
|
| 101 | right_sobel = np.array([
|
| 102 | [-1, 0, 1],
|
| 103 | [-2, 0, 2],
|
| 104 | [-1, 0, 1]
|
| 105 | ])
|
| 106 |
|
| 107 | top_sobel = np.array([
|
| 108 | [1, 2, 1],
|
| 109 | [0, 0, 0],
|
| 110 | [-1, -2, -1]
|
| 111 | ])
|
| 112 |
|
| 113 |
|
| 114 | def calculate_target_size(img_size: int, kernel_size: int) -> int:
|
| 115 | print(f'calculate_target_size({img_size}, {img_size})')
|
| 116 | num_pixels = 0
|
| 117 |
|
| 118 | # From 0 up to img size (if img size = 224, then up to 223)
|
| 119 | for i in range(img_size):
|
| 120 | # Add the kernel size (let's say 3) to the current i
|
| 121 | added = i + kernel_size
|
| 122 | # It must be lower than the image size
|
| 123 | if added <= img_size:
|
| 124 | # Increment if so
|
| 125 | num_pixels += 1
|
| 126 |
|
| 127 | print(f'calculate_target_size returns {num_pixels}')
|
| 128 | return num_pixels
|
| 129 |
|
| 130 | def convolve(img: np.array, kernel: np.array) -> np.array:
|
| 131 | # Assuming a rectangular image
|
| 132 | tgt_size = calculate_target_size(
|
| 133 | img_size=img.shape[0],
|
| 134 | kernel_size=kernel.shape[0]
|
| 135 | )
|
| 136 | # To simplify things
|
| 137 | k = kernel.shape[0]
|
| 138 |
|
| 139 | # This will hold our 3-channel RGB result
|
| 140 | convolved = np.zeros(shape=(tgt_size, tgt_size,3))
|
| 141 |
|
| 142 | # Iterate over the rows
|
| 143 | for i in range(tgt_size):
|
| 144 | # Iterate over the columns
|
| 145 | for j in range(tgt_size):
|
| 146 | # Iterate over channels
|
| 147 | for c in range(3):
|
| 148 | mat = img[i:i+k, j:j+k, c]
|
| 149 | # Apply the convolution - element-wise multiplication and summation of the result
|
| 150 | # Store the result to i-th row and j-th column of our convolved_img array
|
| 151 | convolved[i, j, c] = np.sum(np.multiply(mat, kernel))
|
| 152 |
|
| 153 | # Clip result array to range 0..255 and make into uint8
|
| 154 | result = np.clip(convolved, 0, 255).astype(np.uint8)
|
| 155 | print(f'{convolved.dtype}, {convolved.shape}')
|
| 156 | print(f'Rmax: {np.max(result[...,0])}, Rmin: {np.min(result[...,0])}')
|
| 157 | print(f'Gmax: {np.max(result[...,1])}, Gmin: {np.min(result[...,1])}')
|
| 158 | print(f'Bmax: {np.max(result[...,2])}, Bmin: {np.min(result[...,2])}')
|
| 159 |
|
| 160 | return result
|
| 161 |
|
| 162 | # ----------------------------------------------------
|
| 163 | # The following is currently useless and is kept for
|
| 164 | # reference purposes (np.clip takes care of clipping)
|
| 165 | # ----------------------------------------------------
|
| 166 | #def negative_to_zero(img: np.array) -> np.array:
|
| 167 | # img = img.copy()
|
| 168 | # img[img < 0] = 0
|
| 169 | # return img
|
| 170 |
|
| 171 | #===========================================================
|
| 172 | # Open image as PIL Image and make Numpy array version too
|
| 173 | #===========================================================
|
| 174 | pI = Image.open('C:/Conv_Python/images/1.jpg')
|
| 175 | img = np.array(pI)
|
| 176 |
|
| 177 | plot_image(img=img)
|
| 178 | #------------------> don't use a cmap such as cmap='gray_r' as 3rd parameter
|
| 179 | plt.imsave(fname='_original.png', arr=img, format='png')
|
| 180 |
|
| 181 | #===================================
|
| 182 | # S H A R P E N E D
|
| 183 | #===================================
|
| 184 | Curr_Title="Cat Image - Sharpened"
|
| 185 | img_sharpened = convolve(img=img, kernel=sharpen)
|
| 186 | plt.imsave(fname='_sharpened.png', arr=img_sharpened, format='png')
|
| 187 |
|
| 188 | plot_two_images(
|
| 189 | img1=img,
|
| 190 | img2=img_sharpened,
|
| 191 | imm_name=Curr_Title
|
| 192 | )
|
| 193 |
|
| 194 | #===================================
|
| 195 | # S H A R P E N E D
|
| 196 | # vs.
|
| 197 | # SHARPENED AND NORMALIZED
|
| 198 | #===================================
|
| 199 | # Now useless, images are normalized in the
|
| 200 | # convolve() function
|
| 201 | #
|
| 202 | # NORMALIZE
|
| 203 | #img_shar_nor = cv2.normalize(img_sharpened, None, 0, 255, cv2.NORM_MINMAX)
|
| 204 |
|
| 205 | #plot_two_images(
|
| 206 | # img1=img_sharpened,
|
| 207 | # img2=img_shar_nor
|
| 208 | #)
|
| 209 |
|
| 210 | #===================================
|
| 211 | # B L U R R E D
|
| 212 | #===================================
|
| 213 | Curr_Title="Cat Image - Blurred"
|
| 214 | img_blurred = convolve(img=img, kernel=blur)
|
| 215 | plt.imsave(fname='_blurred.png', arr=img_blurred, format='png')
|
| 216 |
|
| 217 | plot_two_images(
|
| 218 | img1=img,
|
| 219 | img2=img_blurred,
|
| 220 | imm_name=Curr_Title
|
| 221 | )
|
| 222 |
|
| 223 | #===================================
|
| 224 | # O U T L I N E D
|
| 225 | #===================================
|
| 226 | Curr_Title="Cat Image - Outlined"
|
| 227 | img_outlined = convolve(img=img, kernel=outline)
|
| 228 | #plt.imsave(fname='_outlined.png', arr=img_outlined, cmap='gray_r', format='png')
|
| 229 | plt.imsave(fname='_outlined.png', arr=img_outlined, format='png')
|
| 230 |
|
| 231 | plot_two_images(
|
| 232 | img1=img,
|
| 233 | img2=img_outlined,
|
| 234 | imm_name=Curr_Title
|
| 235 | )
|
| 236 |
|
| 237 | #===================================
|
| 238 | # NEG_TO_ZERO OUTLINED
|
| 239 | #===================================
|
| 240 | #img_neg_to_z_OUT = negative_to_zero(img=img_outlined)
|
| 241 | #plt.imsave(fname='_neg_to_z_OUT.png', arr=img_neg_to_z_OUT, format='png')
|
| 242 | #
|
| 243 | #plot_two_images(
|
| 244 | # img1=img,
|
| 245 | # img2=img_neg_to_z_OUT
|
| 246 | #)
|